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The robustness of control is a requirement to maintain a fluid layer at conductive equilibrium heated to a
highly supercritical condition. Robustness determines how much uncertainties, or design parameter mis-
matches, can be tolerated. Both linear stability analysis and three-dimensional fully nonlinear simulations are
used for the study of the linear quadratic Gaussian �LQG� controller. The parameter mismatches from the
nominal conditions are introduced into the plant model, while the LQG compensator assumes nominal condi-
tions. The mismatches arise from boundary properties, actuator lag, sensor level uncertainty, and wall thick-
ness, as well as from the major parameters such as Prandtl number, Rayleigh number, wave number, and
truncation number in the reduced-order model. The results suggest that the LQG compensator action can
preserve closed-loop stability at over ten times the critical Rayleigh number, provided that the mismatches in
the sensor level and wall thickness are small. Mismatches in the Prandtl number and wall material properties
have little impact. Mismatches in Rayleigh number and wave number are relatively benign compared with the
sensor and thickness parameters. Techniques for measuring the plant output temperature at multiple levels with
sufficient accuracy may be an implementation challenge.
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I. INTRODUCTION

Fluid flow control has become a rapidly growing area of
research, that combines traditional knowledge of fluid dy-
namics and numerical computations and modern estimation
and control theory. A particular well-known problem that has
been pursued by investigators with interest in recent years is
the convection suppression in a layer of fluid at supercritical
condition �a simple two degree-of-freedom analogy is con-
trolling an inverted pendulum about its vertical position�.

The goal of analysis is to develop a robust compensator
design for convection suppression using a modern control
synthesis approach. The Boussinesq model of Rayleigh-
Bénard convection has been investigated quite vigorously
because the experimental configuration can be modeled and
simulated with high fidelity. In Refs. �1,2� a purely propor-
tional feedback control law is shown to produce encouraging
results, even though the control law is well known for its
limitations. Another limitation is the choice and placement of
temperature sensors, Howle �1,3� measured the mean tem-
perature, averaged over the fluid depth �by shadowgraph
technique�; Tang and Bau �2,4� measured the temperature
only at a single level along the fluid depth. Neither has pro-
vided temperature measurements sufficient to characterize
the disturbance mode shapes along the direction of the layer
depth. The mixed findings, discrepancies between theoretical
and experimental results reported by the authors, may very
well be due to the lack of robustness of control, the simple
feedback control law, as well as the crude sensor outputs and
lack of observability.

Measuring disturbance temperatures at multiple levels im-
proves the system observability significantly. In our model,
knowledge of temperatures at three interior levels of the fluid
layer is assumed. This is a significant assumption. For an
actual laboratory implementation, the remote infrared �IR�

sensing technique is probably the only viable way to acquire
such knowledge. Furthermore, for a complete horizontal cov-
erage of the fluid layer, it will probably require a high-
frequency scanning and sensing technique. This technique is
available for many applications but is not investigated in this
study.

To improve the robustness of control we have developed a
linear quadratic Gaussian �LQG� control synthesis compen-
sator �5�. The LQG design with loop transfer recovery �LTR�
is well known and proven to give robust performance in
many applications. The LQG-LTR compensator is applied to
a three-dimensional, fully nonlinear model �6� developed
based on a Boussinesq system of equations treated by a spec-
tral, time-splitting technique �see Marcus �7��. The results
show that the linear compensator is effective in damping out
an initial state of finite-amplitude convection at a higher Ra
than that reported in Refs. �1,4�. The linear compensator is
modally distributed. Although the compensator built for each
Fourier mode is linear, controlling all Fourier harmonic
modes is nonlinear in the sense that all these modes are gen-
erated by the advective nonlinearities. Two further significant
advances in the compensator design are reported in Ref. �8�.
These are �i� the successful building of an order-reduced
LQG compensator, and �ii� the developing of a gain schedule
algorithm.

This paper aims at the robustness of the LQG compensa-
tor. To enhance the fidelity of the existing plant models �lin-
ear model for stability analysis and fully nonlinear and three-
dimensional for simulations�, we incorporate finite walls to
replace the isothermal boundary condition. A finite-wall
model is studied by Howle �9�. In the parameter region stud-
ied the closed-loop behavior has an interesting oscillatory
mode. As for our LQG compensator model, both the ideal-
ized and finite-wall versions are used. To avoid confusion,
we denote the compensator with idealized boundary condi-
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tions �5� as C1 and the compensator with finite conductive
walls as C3. Also, in addition to using one actuator plane at
the bottom wall �referred as a single-plane actuator�, an ad-
ditional actuator plane at the upper wall �referred as a
double-plane actuator� is used. For the evaluation of control-
ler robustness, in our previous study �5�, the plant, like the
compensator, is set at the nominal parameters.

In Ref. �5�, the Nyquist criterion provides the indicator for
robustness. The Nyquist criterion gives the total margin.
Moreover, no detailed investigation of the stability margin as
a function of the wave number is provided. In this study,
effects that impact robustness will be sorted out individually,
as a function of wave number. The stability margins are ob-
tained with respect to the Rayleigh number, actuator lag,
sensor-plane depth uncertainty, wall thickness uncertainty,
and single-plane versus double-plane actuators. Besides
computing the stability limiting curves based on linear mod-
els, we also introduce a singular-value bound as a more con-
servative criterion for robustness, which is applicable to
multi-input-multi-output �MIMO� plant systems. Besides the
linear stability, we also investigate robustness using a fully
nonlinear, three-dimensional �3D� simulation tool.

II. MATHEMATICAL FORMULATION

A. Plant model

In Fig. 1 we show a schematic of a section of an infinite
layer of fluid, bounded by two finite-conductive walls with
finite thickness. The fluid layer has thickness d* �in this pa-
per an asterisk denotes dimensional variables or compensator
parameters �at nominal conditions��. The outer surfaces of
the lower and upper walls are prescribed at temperatures T2

*

and T1
*, respectively. The upper and lower wall of thicknesses

are du
* and d�

*. For nondimensional scalings we use the exter-
nal temperature difference �T*=T2

*−T1
* as the temperature

scale and the fluid layer thickness d* as the length scale. In
addition, the fluid thermal diffusive time scale d*2 /�* is used
for scaling time, where �* is the fluid’s thermal diffusivity.
The equilibrium conductive temperature modified by the
presence of the finite walls is derived in the Appendix. In the
nondimensional form, the fluid is governed by the Oberbeck-
Boussinesq �OB� equations,

Pr−1�tv = Pr−1v � � + kRa� − ��e + �2v , �1�

�t� = − v · �� + w + �2� , �2�

� · v = 0, �3�

where v= �u ,v ,w� is the velocity vector field, �=��v is the
vorticity, �e=�+v ·v /2 is the effective pressure head, � is
the perturbation temperature with respect to the equilibrium
conductive state. The z direction is directed upward and k is
the unit vector.

The plant system has two external nondimensional param-
eters: the Rayleigh number and the Prandtl number. The
Prandtl number is Pr=�* /�*, where �* is the kinematic vis-
cosity. The Rayleigh number is defined in terms of the outer-
wall temperature difference and the fluid layer thickness,
Ra=�*g�T*�d*�3 /�*�*, where �* is the coefficient of ther-
mal expansion. All the material properties are assumed con-
stant. Note that Ra here is defined based on the outer wall-
to-wall temperatures �T* but fluid thickness d*. The
effective Raf should be defined based on the fluid boundary
temperatures. In the Appendix, Raf is derived from Ra, by
replacing d* with d*h, where h is a nondimensional factor.
Equation �3� is the continuity equation for incompressible
flow.

In addition to the OB equations describing the fluid layer,
the lower and upper wall walls are governed only by the
heat-transfer equations,

�t�� = ���2��, �4�

and

�t�u = �u�2�u, �5�

where ��=��
* /�* and �u=�u

* /�*.
The kinematic boundary conditions applied to the velocity

field in the fluid layer, which are defined as the nonperme-
able and nonslip conditions,

v�x,y,0,t� = 0, v�x,y,1,t� = 0 . �6�

The fluid-wall interfacial thermal boundary conditions are
dynamic, not prescribed. They are matched conditions of
temperatures and heat flux,

��x,y,0,t� = ���x,y,0,t� ,

�z��x,y,z,t��z=0 = k��z���x,y,z,t��z=0 �7�

and

��x,y,1,t� = �u�x,y,1,t� ,

�z��x,y,z,t��z=1 = ku�z�u�x,y,z,t��z=1. �8�

The parameters k� and ku are the thermal conductivity ratios
of the upper and lower wall materials defined in the Appen-
dix, respectively.

The thermal actuators correspond to the prescribed outer
wall thermal boundary conditions,

���x,y,− d�,t� = u��x,y,t� , �9�

where u��x ,y , t� is the temperature control input imposed at
lower wall, and

FIG. 1. The sensor and actuator location in the fluid layer.
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�u�x,y,1 + du,t� = uu�x,y,t� , �10�

where uu�x ,y , t� is the temperature control input imposed at
upper wall in case of two actuator planes. The control inputs
to the plant u� and uu are functions of the sensor outputs
from the plant. Like in Ref. �5�, we consider three sensor
planes, located at z=zsk, k=1,2 ,3. The sensor planes mea-
sure temperatures

zsk�x,y,t� = ��x,y,zsk,t�, k = 1,2,3. �11�

The spectral decomposition of the three-dimensional ve-
locity and temperature field variables and the fractional step,
time-splitting method for integrating the fully nonlinear OB
system of equations are described in detail in Ref. �6�. De-
tails are provided in the references therein, in particular, by
Marcus �7�. Here, only the addition of the conductive walls
into the existing numerical scheme, described by Eqs. �4�
and �5�, will be mentioned with no repetitions.

Unfortunately, a direct incorporation of Eqs. �4� and �5�
using the existing fractional-step approach �6� is numerically
unstable. So, the three heat equations have to be solved si-
multaneously. Referring to Ref. �6�, we add to the physical
dependent variables two thermal fields ��� ,�u�, besides the
existing fields �u ,v ,w , p ,��. All the fields have independent
variables �x ,y ,z , t�, where each field has the same �x ,y� co-
ordinate ranges, but ��, �, and �u have different z coordinate
ranges. We use three column vectors to represent the corre-
sponding Fourier-Chebyshev coefficients ��� ,� ,�u� corre-
sponding to the physical field variables ��� ,� ,�u�.

The finite wall temperature distribution has a simple
closed-form solution if the diffusive term in the diffusive
equations dominates and the time derivative term is negli-
gible �10�. In general, a numerical solution is computed. At
the nth time step �not fractional step�, the wall temperatures
are expressed as

��
�n+1� = b1��T��n�� + b2u�

�n�, � = �1,− 1,1,− 1, . . . �T,

�u
�n+1� = b3��T��n�� + b4uu

�n�, � = �1,1,1,1, . . . �T, �12�

where b j �j=1,4� are obtained by inverting the two matrix
equations for the wall heat equations. The implicit Euler and
tau method are used here. For the lower wall heat equation,
its lower boundary condition is the lower wall control and its
upper boundary condition can be either the interfacial tem-
perature matching condition or the interfacial heat flux
matching condition. Similar conditions for the boundary con-
ditions of the upper wall heat equation are developed, al-
though we choose the interfacial temperature matching con-
ditions as the boundary conditions for solving the wall heat
equations. The two scalar controls, u� and uu are either func-
tions of �x ,y , t� �in physical space� or �kx ,ky , t� �in Fourier
space�. In this way, the wall temperatures are explicitly
solved in terms of the two control parameters and the fluid
layer temperature distribution.

We can now replace the idealized lower and upper bound-
ary conditions �i.e., ��x ,y ,0 , t�=u��x ,y , t� and ��x ,y ,1 , t�
=uu�x ,y , t�� previously used �6� by the following conditions,
respectively:

��TD −
k�

d�

��TDb1�����n+1� =
k�

d�

��TDb2�u�
�n�,

��TD −
k�

d�

��TDb3�����n+1� =
k�

d�

��TDb4�uu
�n�, �13�

where D is the first derivative matrix defined for z=0,1 for
the Chebyshev coefficients ��→�z� corresponds to �→D��.
If the interfacial temperature matching conditions are used
for the wall temperatures, then the interfacial heat flux
matching conditions have to be used for the fluid, and vice
versa. It can be shown that, as k� /d�→	, the lower wall
boundary condition approaches the idealized boundary con-
dition used in our previous studies. A similar condition holds
for the upper wall boundary condition. An actuator lag for
the controls is incorporated as an additional plant state.

B. Modally distributed LQG compensator

The LQG compensator design is described in detail in
Ref. �5�. We will not repeat the details here. In brief, each
compensator �denoted as a transfer function matrix Kmn be-
low, m=1,2 , . . . ,Nx, n=1,2 , . . . ,Ny, see Fig. 2�, is of the
linear quadratic Gaussian and loop transfer recovery
�LQG-LTR� type. The LTR approximation provides almost
the full-state feedback performance of ±60° phase margin
and −6 dB to 	 in lower and upper gain margins, by allow-
ing the observer weighting parameter 
→	 �11�. As in our
previous design �6�, we use 
=103. We use the regulator
weighting parameter �=0.1. Note that �→0 corresponds to
unlimited control authority. In addition to the compensator
parameters � and 
, the compensator has system model that
involves the major physical parameters of the problem; the
Rayleigh number as Ra* and the wave number as �mkx

* ,nky
*�

�the asterisk denotes nominal values�. When the nonlinear
plant yields a solution described by a 2D wave number array
�mkx ,nky� for m=1,2 , . . . ,Nx, and n=1,2 , . . . ,Ny, then the
compensator consists of N=NxNy single-wave-number sub-

FIG. 2. The LQG control loop diagram.
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compensators. A kth subcompensator consists of a Kalman
filter Fk and a optimal regulator Rk �k=1,2 , . . . ,N�. The three
levels of temperatures in Fig. 2 are denoted by Z1, Z2, and Z3.
The output from the kth compensator is either one or two
scalar controls, depending on one or two actuator planes
used. The corresponding plant parameters �without asterisk,
with uncertainties� can differ from the compensator param-
eters �with asterisk, at nominal conditions�. Figure 2 presents
a block diagram showing the Fourier-decomposed nonlinear
plant. All inputs and outputs are Fourier-Chebyshev coeffi-
cients. Each Fourier mode disturbance corresponding to
wave numbers �mkx ,nky� is controlled by a LQG compensa-
tor Kmn designed at the nominal wave numbers �mkx

* ,nky
*�.

The greater the difference between the compensator and
plant parameters while preserving closed-loop stability, the
more robust the compensator, i.e, the greater the stability
margins. We denote the compensator corresponding to ideal-
ized thermal boundary condition as C1, and the one incorpo-
rating finite walls as C3. The reduced-order compensator �8�
is used here. Since our focus is on robustness, we will not
deal with the transient conductive state nor will the gain-
scheduling algorithm be used.

III. RESULTS

A. Linear stability using a single-plane actuator

In the linear stability study, a linearized plant dynamical
model is used. We assume the material properties of the up-
per and lower walls to be the same, corresponding to alumi-
num at room temperature. The walls have thickness 1/10 of
the fluid depth. For the working fluid using water we have
Pr=7.0, Kl=Ku=400, and �l=�u=670. Using air we have
Pr=0.7, Kl=Ku=8800, and �l=�u=4.2 instead.

1. Major parameter uncertainties

Our nominal model consists of one actuator, located at
outer surface of the lower wall, at z=−dl and three sensor
planes, located at zs1=0.2, zs2=0.5, and zs3=0.8. These are
optimal sensor locations according to our previous analysis
�5�. The nominal Ra*=20 Rac, where Rac�1707.762 is the
critical Rayleigh number. The LQG compensator is designed
at the nominal values �denoted by an asterisk�. In the non-
linear simulations �6–8� the compensator consists of an array
of single-k controllers. The nominal wave number k* is an
array evenly spaced wave numbers covering the entire un-
stable band at Ra*. In the linear stability analysis, the nomi-
nal wave number k* is a prescribed parameter that can be
varied across the unstable band. Here the compensator is
assumed to be designed at �k* ,Ra*�. At nominal condition,
the plant model has k=k* and Ra=Ra*. For robustness inves-
tigation, we vary k and Ra from their nominal values.

The eigenvalue analysis indicates that the closed-loop
system using the steady-state LQG compensator is always
stable at the nominal condition, i.e., at k=k* and Ra=Ra*

even when Ra* is as large as 100Rac. However, at high Ra
exceeding, say, 20Rac, the least stable eigenvalue becomes
sensitive to small changes in the prescribed parameter. This
is an indication of weakening of robustness at large Ra.

In the following, we vary the plant parameter Ra from the
nominal value Ra*=20Rac to see how far the system can
tolerate the change before becoming unstable. The result pre-
sents the stability margin �Ra=Ra−Ra* in terms of the wave
number k*. In doing so we assume that the plant wave num-
ber k is unchanged from the nominal value k*. In Figs. 3 and
4, we show the results Ra vs k for the case at Pr=7.0 and
Pr=0.7, respectively. The margin �Ra is the range above 20.
For the two values of Pr, the results appear very similar. The

FIG. 3. �Color online� Stability
margin in Ra vs k for Pr=7.0
�upper panel� and correspond-
ing imaginary eigenvalue �lower
panel�.
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margin in Ra �upper panels� dips to a minimum near k=13.
Although the minimal margin occurs at approximately four
times the critical wave number kc�3.117, in the nonlinear
simulations presented later, we see no sign that short-wave
modes are being excited. In fact, nonlinearity is stabilizing
by cascading disturbances to shorter and shorter harmonic
modes that promote diffusions. Beyond k=13, the modal dif-
fusive terms become very large and stabilizing; the Ra mar-
gin is expected to increase unboundedly. The pair of imagi-
nary eigenvalues with zero real part is shown in the lower
panels. The result shows that, for positive plant uncertainty
in Ra �i.e., Ra�Ra*�, the closed-loop behavior first becomes
unstable to an oscillatory mode at lower wave number and to
a monotonic mode at higher wave number. For negative
plant uncertainty in Ra �i.e., RaRa*�, the closed-loop be-
havior is always stable.

We turn to the wave number margins. Here we assume
there is no uncertainty in Ra, i.e., Ra=Ra*=20Rac. We vary
the nominal wave number k* and at each value of k* we
determine the �k margins, �k=k−k*, where there are two
values of �k, the upper and lower �k stability limit. Again,
we consider the cases of Pr=7.0 �Fig. 5� and Pr=0.7 �Fig. 6�.
Again, we see that the behavior for both cases are very simi-
lar. In both cases, the upper �k margin �upper curve� in-
creases steeply beyond k*=8. The lower k margin �lower
curve� behaves in a rather complicated fashion. The margin
diverges between k*=4.0 and 5.0 but between k*=5.0 and
the �k minimum near k*=13, the margin is quite flat. Then,
beyond k*=13, the lower �k margin increases linearly. It
appears that the stability margin is weakest near k*=13,
which means that the closed-loop system is least robust with
respect to, or most vulnerable to, unstable mode onset for a
spatial length scale corresponding to k*=13, or a wavelength
�*=2� /k*, approximately 1/2 of the layer depth.

We emphasize that the three-level sensor configuration is
important for robustness. Decreasing the number of sensor
planes or moving the outer sensor planes towards the wall
will erode the state observability. As a result, closed-loop
stability is only achievable at much lower Ra*.

2. Actuator lag

A potential destabilizing effect arises from the actuator
lag. Both finite conductivity and electronic processing in the
thermal actuator contribute to the actuator lag. A first-order
lag effect is incorporated in the linearized plant model and
later in the nonlinear plant, described by the transfer function
�TF� Gd=�d / �s+�d� where s is the Laplace-transformed
value. This TF has to be modeled in between the compensa-
tor output uo and the plant input ui. Because of the lag, we
have

u̇i + �dui = �duo. �14�

For large �d, or small lag time constant �d=2� /�d, the effect
is small, i.e., uo�ui. But for large �d, the lag can be desta-
bilizing. To model the actuator lag, we write the linear plant
state-space equation as ẋ=Ax+Bui, where ui is given in Eq.
�14�. The compensator output uo can be used as the input to
the plant model, modified as

	ẋ

u̇i

 = 	A B

0 − �d

	x

ui

 + 	0

�d

uo,

y = �C 0� 	x

ui

 . �15�

FIG. 4. �Color online� Stability
margin in Ra vs k for Pr=0.7 �up-
per panel� and corresponding
imaginary eigenvalue �lower
panel�.
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In Fig. 7, we show the destabilizing effect of the actuator lag
by plotting the real part of the least stable eigenvalue
�growth rate� versus wave number. In this case, both plant
and compensator parameters are set to the same condition,
with k=k*, Ra=Ra*=20Rac. The left panel shows the case
for Pr=7.0 and the right panel shows the case for Pr=0.7. In

both cases, the least-stable eigenvalue �real� is shown as a
function of the wave number �k� for three lag time constants,
�d=0.001, 0.003, and 0.005. These are in nondimensional
time unit. In the wave-number band between k=3 and k=8
for the case of Pr=7.0, a sufficiently large lag time-constant
causes instability. For the case Pr=0.7, however, the lag has

FIG. 5. �Color online� Margins
�k vs k* for Ra=20Rac, Pr=7.0.

FIG. 6. �Color online� Margins
�k vs k* for Ra=20Rac, Pr=0.7.
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no destabilizing effect. For the case Pr=0.7, �d=0.003 al-
most drives the Fourier mode at k=5 unstable. For the case
Pr=0.7, the actuator lag is more destabilizing for higher
wave number. The eigenvalue peaks near k=13.

The nondimensional time scale is d2 /�. For water and
layer thickness d=0.5 cm, one nondimensional time unit
=176 s at standard temperature pressure �STP�. For air � is
about 145 times that of water. In order to get the same non-
dimensional time scale d for air has to be 12 times that of d
for water. For the nondimensional time scale, if the layer
thickness is 0.5 cm, say for water at STP, a physical lag �d
=0.001 corresponds to 0.18 s, roughly; and that for air is
only 0.001 s. One can always stretch the physical lag time
for the same value of �d, by increasing the layer depth of air.
In order to maintain the same Ra for air �Ra is proportional
to d3 /� for a given temperature difference�, however, this
implies decreasing the temperature difference for air.

3. Sensor plane depth uncertainty

The sensor-plane depth uncertainty turns out to be a dif-
ficult problem. The nominal sensor plane depths are z1

*=0.2,
z2

*=0.5, and z3
*=0.8 �scaled by the fluid layer thickness�.

Consider the compensator model to have these nominal val-
ues but the plant model has corresponding plane depths of
z1=z1

*+�z1, z2=z2
*+�z2, and z3=z3

*+�z3 where the perturba-
tions are due to uncertainties. We assume each of �zi is a
zero-mean Gaussian number with standard deviation 0.01.
Consider the case Pr=7.0, Ra=Ra*=2000, k=k*=3.5. We
use the C3 compensator for the three-layer plant model. Fig-
ure 8 shows the results for 5000 Monte Carlo runs. For each
realization of error ��z1 ,�z2 ,�z3�, the closed-loop, least
stable eigenvalue is computed. If the real part is less than or
equal to zero, a dot is shown in the plot. The ensemble shows
where the stable region lies on the 3D error space. Panels

FIG. 7. �Color online� Least
stable eigenvalue vs k with actua-
tor lag.

FIG. 8. �Color online� Stable
region in the 3D error space from
5000 Monte Carlo runs.
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�a�–�c� are projection of the points �stable� onto the �z1 vs
�z2 plane, �z2 vs �z3 plane, and �z1 vs �z3 plane, respec-
tively. The last panel shows the 3D plot of the points. The
unstable points are not shown. The figures use a uniform
scale per axis from −0.04 to 0.04. The results indicate that �i�
the stable region in the 3D error space is quite small; �ii� �z3
appears to be the least significant error among the three,
relatively speaking. It means the sensor plane farthest from
the actuator plane can tolerate largest uncertainty; �iii� both
�z1 and �z2 are important. However, the shape of the stable
region is not symmetric with respect to the sign of error. It
appears less destabilizing if the first and second sensor
planes are moving away from the actuator, more destabiliz-
ing if both are moving towards the actuator. It is worse if one
is moving away but the other is moving towards the actuator.
The sensor-plane depth errors can be a significant challenge
in the laboratory implementation.

B. Linear stability using two actuator planes

It is of interest to see if there will be improvement in the
robustness by the addition of an extra actuator plane on the
outer face of the upper wall. This addition makes the plant a
three-input-two-output system. We choose to show the case
Pr=7.0 only. In Fig. 9, we show the Ra margin in k as in the
nominal case. The margin curves are very similar to the ones
before. Only a very slight improvement in margins is evi-
dent. The improvement is not significant. Compared the sec-
ond panel between Figs. 3 and 9, the k band for imaginary
part of the least-stable eigenvalue becomes significantly
smaller. In Fig. 10, we show the upper and lower k margins
vs k. Again, the improvement with an additional actuator is
small.

1. Singular-value bounds

Doyle and Stein �11� develop an approach to use the sin-
gular values bounds for relative stability measure in finite-
dimensional, linear-time-invariant �FDLT� systems. The con-
ditions give bounds that guarantee stability but these are not
necessarily tight bounds, therefore, more conservative. To
illustrate the idea, it is more convenient to use the transfer
function �TF� notation. The TF between input and output of
the state-space system �A ,B ,C ,D�, corresponding to the
standard dynamical and output equations ẋ=Ax+Bu and y
=Cx+Du �after Laplace transform� is y�s�=G�s�u�s�, where
G�s�=C�sI−A�−1B+D. Here, we use G�s� to denote the
plant TF. In the following, both plant and compensator TFs
correspond to a single-wave-number model. There are two
common ways to model uncertainties. One is by additive
perturbation to the nominal G�s�, G�=G+�G. The other is
by multiplicative perturbation to the nominal G�s�, G�= �I
+L�G, where L is a multiplicative error model derived based
on G� and G. Here, the latter way is adopted. To keep the
uncertainties within bounds, we require ��L��m��� for
some prescribed function of frequency, �m���. Here � and �
denote the upper and lower bound singular values, respec-
tively. The LQG compensator, denoted by K�s� is defined by
state space system (�A*−K fC

*−B*Kc� ,K f ,−KcD
*), where

K f and Kc are the filter and regulator gains, respectively.
Otherwise, the matrices are identical to those of the linear-
ized plant.

There are two ways consider breaking the loop of a com-
pensated plant. One is by breaking the loop at the plant out-
put �see Fig. 11�a��. This case gives a compensated plant TF
equal to GK�s� and the other is by breaking the loop at the
plant input �see Fig. 11�b��. In both figures, the dashed line in

FIG. 9. �Color online� Stability
margin in Ra vs k for Pr=7.0 �up-
per panel�, and corresponding
imaginary eigenvalue �lower
panel�.
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the loop denote the broken loop. This case gives a compen-
sator plant TF of KG�s� �note that the matrix columns cor-
respond to the inputs and matrix rows correspond to the out-
puts�. In Ref. �5�, we considered a plant with one actuator
plane �one input� and three sensor planes �three outputs�.
Therefore the dimensions of G�s� is 3�1. The compensator
takes the three plant outputs as measurements to produce one
control therefore the dimension of K�s� is 1�3. The advan-
tage by breaking the loop at the plant input is that we obtain
a single-input-single-output �SISO� GK�s�. Therefore, as
demonstrated in Ref. �5�, the relative stability can be effec-
tively analyzed using gain and phase margins, based on the
classical Nyquist criterion.

Here, the Doyle and Stein condition provides an indepen-
dent means to assess the stability margins, apart from the
parameter margin curves from the direct closed-loop compu-
tation. We consider two actuator planes and three sensor
planes. The Nyquist criterion can no longer be applied. Con-
sider breaking the loop at the plant output �the argument is

equally valid for breaking the loop at the plant input. In the
present case, however, the plant has two plant inputs versus
three outputs, we caution that the 3�3 matrix GK is rank
deficient by 1�. Doyle and Stein �11� noticed that to guaran-
tee stability in the presence of uncertainties, G�K�s� has to
preserve the system dimensions of GK�s�. If the compen-
sated plant has equal inputs and outputs, then the generalized
Nyquist criterion on the determinant is that the number of
encirclement of det�I+G�K� remains unchanged from
det�I+GK�. Preserving the system dimensions means that
the lower bound of the singular value of I+G�K is positive
definite. That is,

0  ��I + �I + L�GK� . �16�

Since �I+GK� is full rank, we pull it out as the common
factor. Then, we require

0  ��I + LGK�I + GK�−1� �17�

for all � and L, or

��GK�I + GK�−1�  1/�m. �18�

Using the matrix identity

GK�I + GK�−1 � �I + �GK�−1�−1 �19�

the stability condition according to Ref. �11� is

��L����  ��I + �GK�−1� , �20�

where the right-hand term is referred to as the matrix return
difference of the loop and �m��� represents the singular-
value bound of the error model �(L���). Note that GK com-
mutes with �I+GK�−1. In the following, we apply the Doyle-
Stein’s stability condition to investigate two separate

FIG. 10. �Color online� Mar-
gins �k vs k* for Ra=20Rac, Pr
=7.0.

FIG. 11. Block diagram showing breaking the compensated
plant loop.
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problems. One is the actuator lag. The other is the finite wall
thermal properties. The actuator is based on a second-order
lag model according to Ref. �12�. Let L �for this case a sca-
lar� be given by

�̄„L���… = � s2 + 2��as

s2 + 2��as + �a
2�s = j� . �21�

A damping factor �=0.15 is used but � is not a sensitive
parameter. Decreasing � to 0.05 gives roughly the same re-
sults. In Figs. 12�a� and 12�b�, we show the case �a=5000
and in Figs. 12�c� and 12�d�, we show �a=2000. These are
nondimensional frequencies. The corresponding physical fre-
quencies are typically two orders of magnitude lower. The
left panel corresponds to k=6.5 and the right panel to k
=13.0. The higher wave-number system appears more robust
with respect to the actuator lag than the lower wave number.
In each panel the two dashed curves correspond to the lower-
bound singular values �see the right-hand side of inequality
�20��. The solid curve shows �̄�L�. The stability margin cor-
responds to the gap between the lower dashed curve and the
solid curve. The larger the gap, the greater the margin. The
result appears fairly consistent with those of Fig. 7. The
upper-bound singular value of the actuator lag is shown in
the lowest curve in each panel of the figure. Now, the lag
time constant is �a=2� /�a. The smaller �a the greater the
lag and the more destabilizing the lag effect becomes. The
closed-loop system remains stable. The physical implication
is this. For water as fluid, an actuator lag time constant of
0.5 s will not trigger instability. For air at STP, this time
constant is shortened by a factor of roughly 150 times. It
appears that if the physical dimensions are unchanged, con-
trolling convection in air requires a much higher-bandwidth
controller than in water. Next, we address the problem of
uncertainties of the finite wall thermal properties. Here, we

construct a plant error model, denoted by �A and �B �where
C and D are not affected� by the following. Let ��u=���

=�� and �Ku=�K�=�K. We compute the derivatives
�A /��, �B /��, �A /�K, and �B /�K. So

�A =
�A

��
�� +

�A

�K
�K ,

�B =
�B

��
�� +

�B

�K
�K . �22�

Note that the error model affects only the plant and the com-
pensator remains at nominal parameters. From the error
model, it is somewhat tedious, but quite straight forward to
generate the TF version of the error L by keeping the first-
order error terms �the derivation will not be produced here�.
Figures 13�a� and 13�b� shows the singular-value bounds for
the same wave numbers k=6.5 and 13.0, respectively. In this
case, we let �� and �K to be 25% of the nominal values.
The dashed curves are the same as in Fig. 12. The pair of
lower solid curves represent the two singular values of L���.
The solid and dashed curves very barely intersect for the k
=6.5 case near ��700. It appears that stability is preserved
in the presence of 25% uncertainties in the wall thermal
properties �both diffusivity and conductivity�, about the
nominal values.

C. 3D nonlinear closed-loop simulations

1. Model setup and assumptions

The compensator is linear, set at the nominal parameters
and the plant model is 3D, nonlinear with uncertainties about
the nominal parameters. The closed-loop system in the pres-
ence of uncertainties is investigated by examining the

FIG. 12. �Color online� SinguIar-value
bounds with the actuator error model.
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closed-loop time response of the upper and lower-wall
Nusselt numbers. Like in Refs. �6–8�, the measure of the
residual convection can be effectively shown using the Nus-
selt number plots. The Nusselt numbers at the upper and
lower wall measure the ratios of total heat flux �convective
and conductive� to the conductive heat flux leaving and en-
tering the fluid layer. As Nusselt number approaches the
value 1.0, the fluid layer convection is removed. Robustness
is determined based on how much mismatches can be toler-
ated before the closed-loop system is unstable.

Although the parameter field is extremely vast, we have
simulated a large number of cases but for limited space only
a selective number of representative cases are presented.
Since the focus of this paper is the robustness of the closed-
loop system with respect to parameter mismatches, the
Rayleigh number is set at a constant during the simulation.
No gain-schedule algorithm �8� will be engaged. The nomi-
nal parameters are set at Pr=7.0, Ra*=2�104, kx

*=ky
*=1.0.

Unlike the linear analysis, these are fundamental wave num-
bers. The nominal geometric and material properties, sensor
and actuator configurations are the same as in the linear
analysis �see first paragraph of Sec. III A�. The simulations
correspond to 32�32 Fourier modes �horizontal�. The inte-
gration and output sampled step is �t=0.004. The simulation
period T is 0.4 time units. Only one set of initial condition is
used, corresponding to the residual state of the closed-loop
simulation at t=0.4 presented in Ref. �8�. We use two ver-

sions of the LQG compensator, C1 and C3, designs based on
a one-layer and three-layer model, respectively. Both are
based on a reduced-order linear model consisting of only
eight vertical complex modes �contrast to 64 vertical real
modes in the plant model�.

2. Finite wall properties

We selected a handful of cases to characterize the closed-
loop behavior �both stable and unstable cases included�. Fig-
ure 14�a� shows the upper and lower Nusselt number re-
sponses when the compensator C1 is used. The plant
parameters are set at nominal. Note that the compensator has
idealized thermal boundary conditions whereas the plant has
finite walls incorporated. The upper �dashed� and lower
Nusselt number �solid� show convection damped out in time.
We then switch to compensator C3, the time response �not
shown here� is visibly indistinguishable from that of Fig.
14�a�.

Keeping the plant at nominal condition, now we reduce
the upper and lower wall’s thermal conductivity and diffu-
sivity values each by 50%. The closed-loop system is stable
with C1 as well as C3.

Next, we increase both wall thicknesses from the nominal
value to d�=du=0.15. Compensator C1 is not capable of sup-
pressing convection any longer. Figure 14�b� shows the ini-
tial response. Eventually, the solution diverges. Using com-
pensator C3, with the nominal wall thicknesses at 0.1, C3
still cannot damp out convection. In this case, the solution
takes longer to diverge �plot not shown�.

We conclude that the mismatches in wall thermal proper-
ties between the compensator and plant up to 50% is easily
tolerated. But the mismatch in wall thickness is significantly
more sensitive.

3. Simulations with actuator lag

In evaluating the actuator lag, we reset all the plant pa-
rameters to nominal values. To incorporate the first-order ac-
tuator lag, the last of Eqs. �15� has to be incorporated into the
time-splitting algorithm of the 3D nonlinear plant model. We
rewrite the equation for the lower plane actuator �similar
equation for the upper plane actuator�,

u̇�i = − �du�i + �du�o. �23�

Subscript o denotes the output from the compensator and i
denotes the input to the plant; the lag frequency �d=2� /�d.
We attempted to integrate the above first-order equation by
the explicit Euler scheme. The closed-loop solution is nu-
merically unstable. We switch to the implicit Euler scheme,

u�i
�n+1� =

u�i
�n� + �t�du�o

�n+1�

1 + �t�d
, �24�

which is numerically stable. For a lag time constant �a as
large as 3�10−2, C1 successfully stabilizes the system. Sur-
prisingly, this time constant is significantly higher than that
predicted by the linear stability result �see Fig. 7�. With C3,
the performance is only slightly better. We increase the lag
time constant to �a=0.1, ten times as large. In Fig. 14�c�, we
show the time response. The closed-loop system is unstable.

FIG. 13. �Color online� Singular-value bounds with the finite
wall property error model.
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4. Major parameter uncertainties

The most benign major parameter mismatch by far is the
Prandtl number. At nominal conditions, we can reduce Pr
from 7.0 to 0.7 in the plant �compensator remains at Pr
=7.0� without destabilizing the closed-loop time response.

For Rayleigh number, previous results indicate that the
higher the nominal value Ra* �here Ra*=2�104�, the

smaller the plant uncertainty in Ra can be tolerated. Here, we
let Ra=1.05Ra* �5% uncertainty�, C1 is capable of stabiliz-
ing the no-motion state. However, when we set Ra=1.1Rac

*,
now C1 is fighting very hard. We show the time response in
Fig. 15�a�. Considerable improvement is demonstrated by
using C3 instead, as the time response shown in panel �b�.
But the system is still unstable. The Ra margin in the 3D

FIG. 14. �Color online� Case
studies in the nonlinear
simulations.

FIG. 15. �Color online� More
case studies in the nonlinear
simulations.
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nonlinear model appears weaker than that predicted by the
linear stability model �see Fig. 3�.

5. Simulations with sensor plane level mismatch

Last, we consider the sensor plane level mismatch. The
sensor level appears to be a sensitive parameter to the closed-
loop stability. Even though we cannot run as many Monte
Carlo cases as in the linear stability study �see Fig. 8�, we ran
several cases with level mismatch with standard deviation
�STD� ±0.02 randomly �zero mean, Gaussian� added to the
three nominal levels. The closed-loop responses remain
stable. However, when we increase the mismatch STD to
±0.05, the closed-loop system is unstable. Figure 15�c�
shows the time response for a case, with zs=0.15,0.55, and
0.85�.

In examining the time responses of the Nusselt numbers,
it seems puzzling at first to see that the convective distur-
bance is damped out to a very small amplitude in all cases
initially, but the control action cannot sustain stability in
some cases. The explanation is as follows. The initial time
responses depend on the initial condition of the states. Since
only one set of initial states is used, it is not surprising that
the initial responses for all cases are similar. The simulation
time appears adequate for the unstable modes to re-organize.
The main point is that we have to simulate long enough to
pass the initial transient period. The asymptotic response is
what determine stability.

There is no specific mention about how the sensors can be
implemented. It should be understood that the conventional,
invasive-type of temperature sensors are probably not prac-
tical. Through private communications, however, it comes to
our knowledge that certain infrared �IR� optical temperature
sensing techniques �remote sensing� are available. Such op-
tical remote-sensing method can probe temperatures at vari-
ous depths in the layer, to very high accuracy. If the field-of-
view of the sensor cannot cover the total horizontal span of
the entire layer, a high-frequency scanning technique can be
used to reconstruct the temperature field. For laboratory
implementations, the remote-sensing method in measuring
the temperatures should be further investigated.

IV. CONCLUSION

This study is to assess the amount of mismatches in the
plant parameters �for a particular sensor and actuator con-
figuration� that can be tolerated by the LQG compensator,
before the closed-loop system turns unstable. This assess-
ment is an important step towards any potential future labo-
ratory implementation. The assessment is done by keeping
the compensator operating at the nominal values and intro-
ducing mismatches to the plant model.

Based on the results from both the linear stability study
and the nonlinear time-domain simulations, we draw the fol-
lowing conclusions: �i� Introducing the finite wall to the fluid
layer does not have a significant impact in altering the
closed-loop stability properties. The thermal conductive and
diffusive properties of the walls in the study correspond to a
good conducting material. The case of poor conducting ma-
terial has not been considered. Therefore the idealized ther-

mal boundary condition used in Refs. �5–8� appears ad-
equate. The current results indicate that using the
compensator C1 �with idealized boundary conditions� versus
the finite-wall compensator C3 does not make any significant
difference at all. For potential laboratory implementation, the
dynamical model with idealized boundary conditions is prob-
ably adequate. �ii� Using two actuator planes on both walls
does not show significant improvement in performance over
using one actuator plane on the lower wall. Using two actua-
tor planes reduces the load carried by one actuator plane. �iii�
For the parameter mismatches in Rayleigh number, wall con-
ductive and diffusive properties, wall thickness and sensor
level locations, the linear stability results shows considerably
larger margins than those obtained from the fully nonlinear
simulations. For the actuator lag, however, it is the other
way. The nonlinear results show more margins that from the
linear results. Both linear and nonlinear results indicate that
the Pr mismatch is insignificant. Mismatched Pr value any-
where in the range of 0.7–7.0 is tolerated. �iv� The more
sensitive mismatches arise from the wall thicknesses and the
sensor level locations. Both linear analysis and nonlinear
simulations indicate that only small mismatches in these pa-
rameters can be tolerated at Ra=11.7Rac �nominal value�.
Reducing the nominal Ra will reduce the sensitivity for
given thickness and level mismatches.

In conclusion, the LQG compensator design is adequate
to suppress convection in the vicinity of 10–15 times the
critical Ra. The implementation of the actuator does not
seem to be a challenge. The study shows that significant
actuator lag can be tolerated. The major challenge appears to
be in the sensors. The problem of sensitivity of stability mar-
gins to the sensor levels may require a novel temperature
measurement technique to resolve. Rather than the invasive
method, it is desirable to use the IR remote-sensing tech-
nique, coupled with a scanner approach. In principle, such
technique can deliver temperature measurements at several
levels of the fluid layer simultaneously, rapidly and accu-
rately. Further investigation of the advanced sensing method
is necessary for potential laboratory experiments.
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APPENDIX: CONDUCTIVE TEMPERATURE PROFILE

Let the outer surfaces of the upper and lower walls be
prescribed at temperatures T1

* and T2
*, respectively. Let the

layer thicknesses from below up be d1
*, d*, and du

*. Use the
fluid layer thickness d* and the temperature difference �T*

=T2
*−T1

* as the scales for length and temperature, respec-
tively, so that we note the nondimensional variables �no as-
terisk� T=T* /�T*, z=z* /d*, T1=T1

* /�T*, T2=T2
* /�T*, dl

=dl
* /d*, d=1, and du=du

* /d*. Let T3 and T4 be the nondimen-
sional temperatures at the inner upper and lower walls. The
constant dimensional heat flux Q* in the layers is given by
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Q* =
k*�T*

d*h
, h = 1 + du + dl, �A1�

where h is the nondimensional factor given in Eq. �A1�. The
temperatures T3 �at upper wall inner surface� and T4 �at
lower wall inner surface� are

T3 = T1 + du/�kuh�, T4 = T2 − dl/�klh� . �A2�

We denote the thermal conductivity ratios kl=kl
* /k* and ku

=ku
* /k*. The temperature in the three layers as a function of z

is

T�z� = T2 − �z + dl�/�klh� , − dl � z � 0,

T4 + �T3 − T4�z , 0  z � 1,

T1 + �1 + du − z�/�kuh� , 1  z � 1 + du.
�
�A3�

The effective Rayleigh number is the fluid interface-to-
interface Rayleigh number. This number is given by Raf
=�*g�T*�T4−T3�d*3 /v*�*. We derive that

Raf = �1 −
dl

klh
−

du

kuh
�Ra, �A4�

with Raf Ra.
It is helpful to show the plant input-output relationship, at

least for the linear case in subcritical condition. Consider
Pr=7.0, Ra=0.9Rac, let the nominal wall thermal conductiv-

ity and diffusivity values be reduced by 50% �for exaggera-
tion�. Consider a strong actuator lag with time constant �a

=0.1. Consider a single, 2D Fourier mode of control at wave
number of k=3 and at k=10. The control is the input tem-
perature to the plant, with amplitude �Fourier coefficient� u
=cos�2�ft� �here f =1�. The plant outputs are the tempera-
ture amplitudes at the nominal sensor plane levels zs=0.2,
0.5, and 0.8. Figure 16 shows the time responses of the con-
trol. On the left column, the upper and lower panel corre-
spond to the one-layer and three-layer case, respectively. The
wave number of the spatial sinusoidal disturbance is k=3.
The time responses in the two panels are very close, suggest-
ing that, at least for the purely conductive case, the idealized
wall and finite wall boundary conditions are about the same.
The dashed curves �no lag, i.e., �a=0� are close to the solid
curves �with lag, �a=0.1� despite the large actuator lag time
constant. Note that the peaks shift to the right as zs is in-
creased. However, for k=3 the temperature maximum occurs
at the midplane rather than at the sensor plane closest to the
actuator. Similarly, we show the responses on the right col-
umn. The right column corresponds to the larger wave num-
ber, k=10. For the small-scale control, the temperature am-
plitude rapidly attenuates when moved away from the
actuator plane. Unlike in the case of k=3, the temperature
amplitude drops monotonically as zs is increased. It suggests
that small-scale control can exist only in the region close to
the actuator plane.

FIG. 16. �Color online� Sensor
temperature comparison for one-
layer vs three-layer, with �solid�
and without �dashed� actuator lag.
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